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SUMMARY

A numerical method to solve the Reynolds-averaged Navier–Stokes equations with the presence of
discontinuities is outlined and discussed. The pressure is decomposed into the sum of a hydrostatic
component and a hydrodynamic component. The numerical technique is based upon the classical
staggered grids and semi-implicit finite difference methods applied for quasi- and non-hydrostatic flows.
The advection terms in the momentum equations are approximated in order to conserve mass and
momentum following the principles recently developed for the numerical simulation of shallow water
flows with large gradients. Conservation of these properties is the most important aspect to represent
near local discontinuities in the solution, following from sharp bottom gradients or hydraulic jumps. The
model is applied to reproduce the flow over a step where a hydraulic jump forms downstream. The
hydrostatic pressure assumption fails to represent this type of flow mainly because of the pressure
deviation from the hydrostatic values downstream the step. Fairly accurate results are obtained from the
numerical model compared with experimental data. Deviation from the data is found to be inherent to
the standard k–� model implemented. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: advection approximations; discontinuous flows; non-hydrostatic free surface flows; stag-
gered grids

1. INTRODUCTION

For shallow water flow problems with hydraulic jumps, the so-called ‘Godunov methods’
developed for aerodynamics are applied [1–3]. Recently, a numerical method for shallow water
flows with large gradients has been outlined by Stelling et al. [4], which is based upon the
classical staggered grids and implicit integration schemes, such as those described by Leen-
dertse [5] and Casulli [6]. The continuity equation is approximated in such a fashion that mass
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is conserved not only globally but also locally. The momentum equation is approximated to
fulfil a proper momentum balance near large gradients.

This paper describes how the numerical principles described by Stelling et al. [4] are
extended to the full Reynolds-averaged Navier–Stokes equations for simulating non-
hydrostatic flows with steep gradients. A semi-implicit finite difference method for non-
hydrostatic flows, recently developed by Casulli and Stelling [7], is applied to solve the
equations. The technique is based upon a fractional step method, where the hydrostatic and
the hydrodynamic components of the pressure are considered separately. The mass conserva-
tion assures a stable numerical solution; a proper momentum balance provides that this stable
solution converges. The resulting algorithm is relatively simple and numerically stable even at
large Courant numbers.

2. GOVERNING EQUATIONS

The governing equations are the Navier–Stokes equations for incompressible fluid which
expressed in two dimensions are

Momentum equations:
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Continuity equation:
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where u(x, z, t) and w(x, z, t) are the velocity components in the horizontal x- and vertical
z-direction respectively, t is the time; p(x, z, t) is the normalized pressure defined as the
pressure divided by a constant reference density; g is the gravitational acceleration and �h and
�t are the horizontal and vertical turbulence viscosity respectively.

Integrating Equation (3) over the depth and using a kinematic condition at the free-surface
leads to the following free-surface equation:
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where �(x, t) is the free-surface level above the reference plane and h(x) is the water depth
measured from the undisturbed water surface (Figure 1).
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Figure 1. Flow schematization.

The pressure p(x, z, t) in Equations (1) and (2) can be decomposed into the sum of its
hydrostatic and non-hydrostatic components. The hydrostatic pressure component is deter-
mined from the vertical momentum equation (2) by neglecting the convective and the viscous
acceleration terms. This gives

p(x, z, t)=g [�(x, t)−z ]+q(x, z, t) (5)

where q(x, z, t) denotes the non-hydrostatic or the hydrodynamic pressure component. By
substituting Equation (5) in Equations (1) and (2) the following equations are obtained:
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3. NUMERICAL APPROXIMATION

The numerical method described by Casulli and Stelling [7] to solve Equations (4), (6) and (7)
is applied. The momentum equations are split and free-surface elevation and hydrodynamic
pressures are determined in two steps. First, the hydrodynamic pressure is assumed null and
free-surface levels are obtained from Equations (4) and (6). When the hydrostatic approxima-
tion is made, q(x, z, t)=0 is assumed throughout. In this step, the non-hydrostatic component
of the pressure is assumed not to have an effect on the resulting flow. In the second step the
velocities are corrected by considering the hydrodynamic pressure terms.
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Figure 2. Control volume.

For the numerical application a fully staggered grid is applied, a so-called C grid. Water
levels and pressures are approximated at locations (i, k), horizontal velocities at (i+1/2, k)
and vertical velocities at (i, k+1/2) (Figure 2).

3.1. First step: hydrostatic pressure

The first step is performed by neglecting the contribution of the hydrodynamic pressures. The
resulting velocity field and water surface elevation at the new time step are not yet final and
will be denoted by u* and w* respectively. A semi-implicit discretization for the momentum
equations (6) and (7) takes the following form:
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In Equations (8) and (9) ADV and HV are finite difference operators that include the
explicit discretization of the advection terms and horizontal viscosity terms respectively.
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Equation (9) forms a linear tridiagonal system with unknowns w* on the same water
column. The provisional vertical component of the velocity can be obtained by the double
sweep algorithm. Equation (8) also constitutes a linear tridiagonal system, which, however, is
coupled to the unknown water surface elevation �n+1. In order to determine �n+1, the
discretized continuity equation (4) is required
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Velocities from Equation (8) are substituted into Equation (10). The resulting equation
constitutes a tridiagonal system with the free-surface elevation as unknown. The system is
solved by the double sweep algorithm. Boundaries upstream and downstream are defined. Any
assumption of the initial free-surface elevation should be valid as long as it leads to positive
water depths. In the simulation included in this article, the initial water level is assumed
constant all over the reach and equal to the downstream boundary. Discharge is prescribed at
the upstream boundary. Downstream, a constant water surface level is imposed. Once the new
free-surface levels are computed, the horizontal velocities u* are obtained from Equation (8).
The boundary condition at the bed is given by the logarithmic law of the wall as (see Rodi [8])
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where � is the von Karman constant and z0 is the friction parameter.

3.2. Second step: non-hydrostatic pressure correction

In the second step the new velocity fields un+1 and wn+1 are computed by including the
hydrodynamic pressures terms into the momentum equation. In this way the provisional
velocity field is corrected by considering the non-hydrostatic pressures.

The discrete momentum equations are
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Cells below the free-surface should verify the discretized incompressibility condition (Equa-
tion (3))
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An equation for the non-hydrostatic pressure qi,k
n+1 under the free surface is derived by

substituting the expressions for the new velocities from Equations (12) and (13) into Equation
(14). The following finite difference equation is obtained:
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Equation (15) forms a five diagonal linear system, which is solved by the preconditioned
conjugate gradient method.

Once the non-hydrostatic pressure is computed, the corresponding horizontal velocity field
is obtained from Equation (12), while the vertical component of the velocity can be obtained,
equivalently, either from Equation (13) or from the continuity equation (14).

4. ADVECTION APPROXIMATION

For numerical approximations, conservation of properties is important near large local
gradients. Near steep bottom gradients, mass conservation seems to be imperative.

The advection terms in the momentum equations are approximated in order to conserve
mass and momentum following the same principles described by Stelling et al. [4] for shallow
water flows.

4.1. Momentum equation in the horizontal direction

The continuity equation is discretized as follows:
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The momentum equation is approximated for positive flows as follows:
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The fact that Equation (17) describes a momentum balance can be demonstrated by
rewriting Equation (17), without taking into account turbulence terms and hydrodynamic
pressure, as

�u
�t

+
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Multiplying Equation (16) by u and adding Equation (19) and then multiplying by (�x �z),
the momentum conservation equation for the control volume shown in Figure 1 is obtained
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Similar approximations can be derived for the other flow directions (Appendix A).
It can be shown that Equation (17) integrated in the depth reduces to the one-dimensional

approximation as described by Stelling et al. [4] when a uniform distribution of u in the vertical
is assumed.

4.2. Momentum in the �ertical direction

The continuity equation is discretized as Equation (16) and the momentum equation is
approximated for positive flows as follows:

�w
�t

+ ū−

�w−w−1,

�x
�

+w̄−

�w−w,−1

�z
�

= −
�q
�z

+�h

�2w
�x2 +

�

�z
�

�t

�w
�z
�

, at (i, k+1/2)

(21)

where
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ū− =
ui−1/2,k+ui−1/2,k+1

2
(22)

w−1,=wi−1,k

w,−1=wi,k−1/2

The fact that Equation (21) describes a momentum balance can be demonstrated by rewriting
Equation (21), without taking into account turbulence terms and hydrodynamic pressure, as
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Multiplying Equation (16) by w and adding Equation (23) and then multiplying by (�z�x),
the momentum conservation equation is obtained
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Similar approximations can be derived for the other flow directions (Appendix A).

5. TURBULENCE CLOSURE MODEL

The turbulence model implemented is the standard k–� model [8]. The k–� model either
neglects the transport of individual turbulent stresses or accounts for them only in an
approximate manner. In flow regions where the accurate description of this transport is
important, for example, in regions where the eddy–viscosity concept breaks down, the
transport equation for the individual stresses should be employed. However, many complex
flows that do not satisfy the equilibrium hypothesis or the isotropic condition have been
reproduced by the k–� model with some modifications in the standard coefficients or in the
equations, reporting substantial improvements. To model the near-wall region, damping
functions are introduced to the k–� model, resulting in the low-Reynolds number version of
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this model. In the standard k–� model, the logarithmic law of the wall is applied; therefore a
very fine mesh is not required.

5.1. The k–� model equations

Hereafter a short description of the governing equations is given. The two-equation turbulence
closure for kinetic energy k and its dissipation � reads
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The terms representing the turbulent fluctuations are approximated by the Boussinesq
hypothesis
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where �t is the eddy viscosity, k is the turbulent kinetic energy and � is the dissipation rate of
the turbulent kinetic energy.

The eddy viscosity is related to k by

�t=c�

k2

�
(29)

The empirical constants are given as c�=0.09, c1�=1.44, c2�=1.92, �k=1.0 and ��=1.3.
The numerical implementation of the k–� model is described in detail by Stelling [9].
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6. SIMULATION OF THE VERTICAL STRUCTURE OF HYDRAULIC JUMPS

The ability of the numerical method to simulate discontinuous flows is illustrated. Flow over
a step where downstream a hydraulic jump forms is computed. Results from the numerical
model are compared with experimental data from the literature [10,11]. This present case has
particular characteristics that complicate its numerical modelling

– Discontinuities in the bottom profile.
– The hydrostatic assumption fails to reproduce the flow mainly because of the departure of

the pressures from the hydrostatic values in the region downstream the step.
– The flow changes from sub-critical to supercritical (through the critical depth somewhere

over the step) and then from supercritical to sub-critical (hydraulic jump).
– Two particular reversal flows should be represented, downstream of the structure (near the

bed) and at the hydraulic jump surface (surface roller).

A channel length of L=3.5 m is discretized with cells of equal size �x=�z=0.01 m. At
inflow, a depth-integrated velocity is prescribed of 0.083 m2 s−1 and at outflow a water depth
(ht) of 0.155 m. The initial conditions are velocities equal zero and horizontal water levels. The
calculation is carried out with a time step �t=0.0025 s and �=1.00. After 5000 time steps the
steady state is obtained. The number of vertical layers varies from six (minimum water depth)
to 26 (maximum water depth).

Figure 3 shows the water levels and Figure 4 illustrates the velocity vectors. The water
surface profile approaches to the measurements for z0=0.000025 m.

Figure 5 depicts the horizontal velocities. Good agreement with the experiments is observed
for all the profiles. An almost exact representation is obtained for reaches upstream of the
structure and after the surface roller of the hydraulic jump (x=0.30 m, 0.50 m and x=2.05

Figure 3. Comparison of water levels: �, experiments; — , numerical model.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 23–43
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Figure 4. Velocity vectors obtained from the numerical model.

m, 2.40 m). Over the step, the measured velocities are more uniform than the predicted
values (x=0.75 m). Downstream of the structure (x=0.99 m) the transition to reverse
velocity in the vertical is linearly represented by the model from the height of the step to
the bottom. However, in the experiments a very sharp change is observed to a certain
height somewhat lower than the step; after that being almost uniform. Immediately after,
the profiles obtained with the model approach the experimental values (x=1.07 m). Then,
in the supercritical reach, velocities near the bed are underpredicted (x=1.20 m). In the
transition to sub-critical flow, the surface roller velocities are well predicted; however, at the
bottom the velocities are more uniform than the predicted values (x=1.26 m and 1.85 m).

Figure 6 shows the vertical velocities. It can be seen that very good agreement with the
experiments in all the reaches is achieved, except in the zone downstream of the structure
(x=0.99 m) where the reverse flow occurs near the bed and in the hydraulic jump where
the surface roller is preponderant (x=1.35 m).

In Figure 7 the Reynolds stresses are drawn. Again good agreement with the experiments
is obtained, except for the zones in supercritical flow (x=1.20 m) and in the length of the
surface roller where they are underpredicted. After the surface roller, very good results are
obtained (x=1.55 m, 1.85 m, 2.05 m and 2.40 m).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 23–43
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Figure 8 depicts the variation of the average in the vertical Reynolds stresses along the
reach. In Figure 9 the turbulence viscosity (�t) obtained from the numerical model is drawn in
the vertical direction. This parameter shows the adaptation length of the transition from
supercritical flow to the conditions where turbulence approaches to the corresponding values
under uniform sub-critical flows.

Figure 5. Comparison of horizontal velocity profiles: �, experiments; — , numerical model.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 23–43
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Figure 5 (Continued)

7. DISCUSSION OF THE RESULTS

The vertical structure of the flow was quite well reproduced, even though a coarse grid was
defined. Major dispersion from the experimental data is found in the reverse flow, downstream

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 23–43
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Figure 5 (Continued)

of the step and at the length of the hydraulic jump roller. At the supercritical reaches,
horizontal velocities are underpredicted. The kind of errors observed are typical of the
standard k–� turbulence closure model implemented.

The turbulence model could be further improved by applying a low-Reynolds number
version of the k–� model, which will allow a better representation of velocities in the
separation and reattachment points. These types of models have been shown to improve the
predictions in the backward-facing step. However, when applied to the simulation of uniform
supercritical flows, Prinos and Zeris [12] reported that the models fail to predict the reduction
in the turbulence velocities u � with respect to sub-critical flows. The turbulence parameters in
supercritical flows appear to be different from those in sub-critical flows, which have been
extensively studied. Studies on supercritical flows are quite limited compared with sub-critical
flows. Some turbulence studies are reported by Prinos and Zeris [12] and Tominaga and Nezu
[13]. An anisotropic turbulence closure model appears more adequate to represent the
supercritical flow and the transition to sub-critical flow along the length of the surface roller.
Nevertheless, the length of this transition is well predicted by the numerical model.

8. CONCLUSIONS

A semi-implicit finite difference method for non-hydrostatic free-surface flows, in which
advection terms in the momentum equations are approximated to fulfil a proper momentum
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conservation, is proved to fairly accurately represent discontinuous flows. Its ability to
simulate these flows is illustrated by computing the flow over a step where downstream of it
a hydraulic jump is formed. This case has particular characteristics that restrict the application
of existent numerical methods:

Figure 6. Comparison of vertical velocity profiles: �, experiments; — , numerical model.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 23–43
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Figure 6 (Continued)

– abrupt changes of bottom topography;
– presence of mixed flows (sub-critical, critical and supercritical flows);
– the pressures downstream of the step highly deviate from the hydrostatic values;
– the hydraulic jump formation.
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The results from the numerical model show good agreement with the experimental data.
Deviation from the data is found in the reversal flow downstream of the step and at the length
of the roller at the hydraulic jump. The errors observed are found to be inherent to the
standard k–� turbulence closure model implemented.

Figure 7. Comparison of Reynolds stresses: �, experiments; — , numerical model.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 23–43
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Figure 7 (Continued)

This numerical model is shown to be a useful tool in the design of structures. The length of
the bed protection downstream of a hydraulic jump could be predicted based on the hydraulic
jump position for a pre-design structure and on the adaptation length of the hydraulic jump.
Furthermore, the model could be used as a flow module towards the morphological modelling
of discontinuous flows where the representation of the vertical structure becomes relevant as
in the case of local scour assessment.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 23–43
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Figure 8. Comparison of average Reynolds stresses: �, experiments; — , numerical model.

Figure 9. Turbulence viscosity obtained from the numerical model.

APPENDIX A. ADVECTION TERMS

A.1. Ad�ection terms momentum in the x-direction

Horizontal ad�ection
The advection terms for the different flow directions are
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The advection terms for the different flow directions are
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A.2. Ad�ection terms momentum in the z-direction

Horizontal ad�ection
The advection terms for the different flow directions are
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ū+ �0� ū− �0, ū+
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